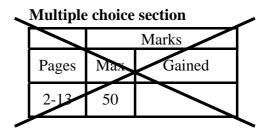
22/06(a) The University of Sydney

CHEMISTRY 1B - CHEM1102 FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2007

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 22 & 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
14	3			
15	3			
16	8			
17	8			
18	4			
19	5			
20	4			
21	8			
23	7			
Total	50			
Check Total				

• Briefly explain why H ₂ Se is a stronger Brønsted-Lowry acid than H ₂ O and a weaker acid than H ₂ Te.	Marl 2
• Compounds of <i>d</i> -block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of V ³⁺ .	1
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.	

2007-J-2

CHEM1102

22/06(a)

June 2007

CHEM1102 2007-J-3 June 2007 22/06(a)

• Complete the following table. (en = ethylenediamine = $NH_2CH_2CH_2NH_2$)

Marks 3

Formula	$K_3[Fe(CN)_6]$	$[Cu(NH_3)_4(H_2O)_2](NO_3)_2$	cis-[CrCl ₂ (en) ₂]Cl
Oxidation state of transition metal ion			
Coordination number of transition metal ion			
Number of <i>d</i> -electrons in the transition metal ion			
Species formed upon dissolving in water			

CHEM1102 2007-J-4 June 2007 22/06(a)

• Solution A consists of a 0.20 M aqued Calculate the pH of Solution A. The	ous solution of formic acid, HCOOH, at 25 °C. pK_a of HCOOH is 3.75.	Marks 8
	Answer:	_
At 25 °C, 1.00 L of Solution B consis dissolved in water. Calculate the pH	ets of 13.6 g of sodium formate, NaHCO ₂ , of Solution B.	
	Answer:	
Solution B (1.00 L) is poured into Sol 25 °C to give Solution C. Calculate the	lution A (1.00 L) and allowed to equilibrate at he pH of Solution C.	
	Answer:	
If you wanted to adjust the pH of Soluequal to 3.00, which component in the need to increase in concentration?		

CHEM1102	2007-J-5	June 2007	22/06(a)
Define what is meant involving (i) phospho	by an "allotrope". Give an examporus and (ii) oxygen.	ple of a pair of allotropes	Marks 2
• The $K_{\rm sp}$ of Al(OH) ₃ is	$1.0 \times 10^{-33} \mathrm{M}^4$. What is the solubil	lity of Al(OH) ₃ in g L ⁻¹ ?	6
	A # 2002		
What is the solubility	Answer: of Al(OH) ₃ in g L^{-1} at pH 4.00?		
What is the solutionity			

Answer:

• The following data were obtained for the reaction between gaseous nitric oxide and chlorine at -10 °C.

Marks 4

$$2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$$

Experiment Number	Initial [NO] (mol L ⁻¹)	Initial [Cl ₂] (mol L ⁻¹)	Initial Reaction Rate (mol L ⁻¹ min ⁻¹)
1	0.10	0.10	0.18
2	0.10	0.20	0.36
3	0.20	0.20	1.44

Deduce the rate law for this reaction and calculate the value of the rate constant.

RATE LAW	RATE CONSTANT
Answer:	Answer:

Br

• Draw the structure of the major organic product formed in the following reactions.

Marks 5

KOH

ethanol solvent

$$\begin{array}{c}
O \\
\hline
1. \text{ NaBH}_4 \\
\hline
2. \text{ H}^{\oplus}/\text{ H}_2\text{O}
\end{array}$$

OCH₃

4

• Suggest reagents you could use to achieve the following transformations.

$$\rightarrow$$
 \rightarrow \rightarrow

A :	B:	
C :	D : 1.	2. H [⊕] / H ₂ O

• Add curly arrows to complete the following mechanism.

Marks 4

$$Br \xrightarrow{\bigoplus} CN \xrightarrow{CN} CN$$

Classify this reaction as $S_N 1$ or $S_N 2$ and explain what the three parts of this descriptor signify.

• Devise a synthesis of the product **Y**, starting from compound **X**. Note that more than one step may be required and you should indicate all necessary steps and the constitutional formulas of any intermediate compounds.

4

$$X$$
 NH_2
 Y

• The amino acids s	serine and valine are sh	nown below.		Mari 7
	H_{2N} $CO_{2}H$	H_{2N} $CO_{2}H$,
	serine	valine		
List the substituent priority.	ts attached to the stered	ogenic centre of valine	in order of decreasing	
highest priority			lowest priority	
Assign the absolut shown above.	e configuration of the	stereoisomer of valine		
Draw a dipeptide f	formed by the condensation	ation of serine with vali	ine.	
What are the two k	key elements of protein	secondary structure?		

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \, \mathrm{J \ K^{-1}}$

Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \,\mathrm{C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

pico

1 atm = 760 mmHg = 101.3 kPa
1 Ci =
$$3.70 \times 10^{10}$$
 Bq
0 °C = 273 K
1 L = 10^{-3} m³
1 tonne = 10^{3} kg
1 Å = 10^{-10} m
1 eV = 1.602×10^{-19} J

p

Decimal fractions Decimal multiples Fraction Prefix Multiple Prefix Symbol Symbol 10^{-3} 10^{3} milli kilo k m 10^{-6} 10^{6} micro mega M μ 10^{-9} 10^{9} giga G nano n 10^{-12}

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04
-	

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w}=pK_{\rm a}+pK_{\rm b}=14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = Ae^{-Ea/RT}$
p = kc	$\ln[A] = \ln[A]_{o} - kt$
$\Delta T_{ m f} = K_{ m f} m$	$\ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_{\rm t}) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log 10 \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	ln x = 2.303 log x
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1																2
HYDROGEN																	нелим Не
1.008																	4.003
3	4											5	6	7	8	9	10
LITHIUM T •	BERYLLIUM											BORON	CARBON	NITROGEN T	OXYGEN	FLUORINE	NEON N.T.
Li	Be											В	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											13 ALUMINIUM	14 SILICON	15 PHOSPHORUS	16 SULFUR	17 CHLORINE	18 argon
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	STRONTIUM	YTTRIUM	zirconium Zr	NIOBIUM Nb	MOLYBDENUM Mo	TC Technetium	RUTHENIUM Ru	RHODIUM	PALLADIUM	Ag	CADMIUM	Indium In	Sn	Sb	Tellurium Te	IODINE	XENON Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM	37 71	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87		89-103	104	105	106	107	108	109	110	111							
FRANCIUM Fr	RADIUM		RUTHERFORDIUM Rf	Db Db	SEABORGIUM Sg	Bh	HASSIUM HS	MEITNERIUM Mt	DS DARMSTADTIUM	ROENTGENIUM Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							
[223.0]	[220.0]	I	[201]	[202]	[200]	[202]	[200]	[200]	[=,1]	[2,2]							

LANTHANIDES	57 Lanthanum La	58 CERIUM Ce	59 PRASEODYMIUM Pr	60 NEODYMIUM Nd	61 PROMETHIUM Pm	62 Samarium Sm	63 _{еигоріим} Eu	64 gadolinium Gd	65 TERBIUM Tb	66 DYSPROSIUM Dy	67 _{ногмим} Но	68 егвіим Er	69 _{тнилим} Тт	70 ytterbium $\mathbf{Y}\mathbf{b}$	71 Lu Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89 actinium	90 THORIUM	91 PROTACTINIUM	92 uranium	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIUM	96 curium	97 BERKELLIUM	98 CALIFORNIUM	99 EINSTEINIUM	100 FERMIUM	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
	Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]